
HEAT TRANSFER UNDER RADIATION EQUILIBRIUM 

IN A RECTANGULAR CHANNEL 

V. I. Polovnikov and Yu. A. Popov UDC 536.3 

Local and integral resultant radiation fluxes on the wall of an infinite rectangular 
channel are determined numerically for the radiation equilibrium case. The error 
in the plane layer approximation is analyzed. 

The working spaces of a number of technological aggregates, e.g., certain kinds of 
metallurgical furnaces, can be represented in the form of a channel with a rectangular cross 
section. The approximation of an infinite plane layer [i] is often used in computations of 
the radiation heat transfer in these apparatus. A quantitative estimation of the validity 
of such an approximation has not yet been performed, however, it is important for practice. 

Let us examine the radiation heat transfer between diffusely grey walls of a rectangular 
channel of infinite extent. The channel is filled with a radiating, absorbing, anisotropi- 
cally dissipating grey medium. The medium is in a state of local radiation equilibrium. The 
wall temperatures are given -- the local densities of the resultant radiation fluxes on the 
walls. We shall solve the problem by using the radiation integral equations [2]. A grey 
medium in radiation equilibrium can be formally considered purely dissipating (Y = i~0) since 
each volume element completely reradiates all the incident radiation. The real scattering 
index should be replaced by the effective value taking account of the intrinsic radiation of 
the medium [3]. In such an approach the temperature distribution in the medium need not be 
known to find the resultant radiation flux density on the wall. We shall take account of 
radiation scattering in the quasi-one-dimensional approximation [4], i.e., we approximate 
the index by an ultimately extended "front-to-back" in the ray direction. In this case the 
need for an integral equation for the volume radiation density drops out and the problem re- 
duces to an integral equation for the surface radiation density 

qe[N) = qi(N) + r(N) [~ ge(N') K(N, N') dFN, --}- qe(N) ~ K*(N, N') dFN,]. 
F F (i) 

which differs from the analogous equation presented in [2] in the second term in the square 
brackets, denoting the radiation flux in [i] that is incident on the surface element dF N un- 
der consideration because of reflection of the effective radiation of this surface from the 
dissipating medium. We obtained the following expressions for the kernels of (i): 

K - ~9 D g l  _ ~ z  d~, 

- - 1  (2) 

ha 
K*--  K. 

213 (3) 

In the quasi-one-dimensional approximation, the ray transmission function at Y = 1 has the form 

D = 

V I -- ~z (4) 

Substituting (4) into (2), we obtain 
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Fig. i. Comparison of results of computing the dimen- 
sionless resultant radiation flux density: I) data 
from [5]; 2) authors' computations. 

Fig. 2. Dimensionless resultant radiation flux densi- 
ties on the lower base of the channel for T = 1.12; 
T2/TI = Ts/TI = 2; rl = 0.02; r2 = r3 = 0.2; i) a/b = 
i; 2) 2.0; 3) 4.0; 4) 8.0; 5) alb§ 
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Fig. 3. Influence of T, a/b, T2/TI, r 
on the magnitude of the error in the 
approximation of a plane layer:G: a) 
T2/TI = Ts/TI, rl = 0.8, r2 = r3 = 0.2 
I) a/b = 1.0, 2) 2.0, 3) 5.0 b) Ts/T~ = 
2.0 a/b = 2.0, rl = 0.02, r= = r~ = 
0.2, i) T2/TI = 2.0, 2) 1.0, 3) adiaba- 
tic side walls (I--r2 =0.2; II--0.8; III-- 
1.0); c) T2/TI = Ts/TI, r: = 0.02, r2 = 
r3 = 0.2, i) T = 4.8; 2) 2.8; 3) 1.12; 
4) 0.0; d) T3/T: = 2.0; a/b = 2.0; r2 = 
1.0; i) r~ = 0.8; 2) 0.5; 3) 0.2; 4) 
0.001; T = 2.0. 

where 

q-I 

h 2 j" (1 - -  9 ~) d V 
K ---- ~1--- 7 V 1 - -  p~ § pl 

--I 

(5) 
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h= I gN-g~" ~ g ~ = 0  or gN=b" 
[ XN--X ~, ~r 0<gN<b; 

k (1--~); 

XN'' YN, YN'YN ~ are the coordinates of the considered and running points on the wall surface 
in the channel cross section. 

The integral equation (i) was solved numerically by the method of algebraic approxima- 
tion [2]. The number of partitions of the boundary surface in the channel cross section was 
n~ i00, which assured ~1% error in the determination of the radiation flux density. The in- 
tegration in (5) was by the Gauss quadrature method. The integral in (i) were approximated 
algebraically by the rectangle formula. To improve the accuracy of the solution, the parti- 
tion intervals were diminished in a geometric progression upon approaching the corners of 
the cross section. The system of linear algebraic equations obtained (n~ i00) for the effec- 
tive radiation flux density was solved by the Gauss method. Values of the resultant flux 

densities were determined from the known dependence 

1 
q = - -  [ ( 1  - -  r )  q e - -  qil. 

r (6 )  

The accuracy of the numerical solution was estimated by comparing with the data in [5], where 
the problem is solved for an isothermal cavity filled with a transparent medium. Satisfac- 
tory agreement between the results is obtained (Fig. i). 

Computations by the method elucidated were performed in a broad range of parameter values 
that can be encountered in practice (Figs. 2 and 3). As an illustration, let us examine the 
case of external heat transfer in the charge heating chamber of a two-bath steel-melting 
furnace, to which the following values of the parameters correspond approximately: a/b = 2, 
T2/TI = T3/T~ = 2, rl = 0.02, r2 = r~ = 0.2, k = 0.67 m -I, b = 4 m, ~ = 0.58. The subscript 
1 refers to the lower base of the rectangular section (charge), 2 to the side walls, and 3 
to the upper base (crown). The theoretical solution of this problem has been obtained in [i] 
in the plane layer approximation, and the results of an experimental study are presented in 
[6]. It follows from a comparison of [i] and [6] that the medium at the exit from the cham- 
ber is in an almost radiation equilibrium state. Lowering the values of the thermal flux 
density in [i] can explain neglecting the influence of the chamber side walls. Local resul- 
tant radiation flux densities on the lower base of the channel are shown in Fig. 2 for dif- 
ferent ratios between the channel width a and its height b. The values of ql/oT~ near the 
side walls differ noticeably from the values at the center of the channel. As the ratio a/b 
grows, the influence of the side walls attenuates and the magnitudes of the radiation flux 
densities tend to the limit value that is valid for a plane layer (a/b+ ~). The error in 
determining the resultant fluxes in modeling an infinite rectangular channel by a plane layer 
is denoted by 

5 = Q--Qo 
Q , (7 )  

where Q= iqldx is the resultant radiation flux on the lower base, Qo is the same in the 
0 

plane layer approximation [7]. The dependence of the quantity T = kb(l--~) the different 
parameters is presented in Fig. 3, where the influence of the parameter a/b, T2/T:, charac- 
terizing the optical properties of the medium, is also shown. The computation is performed 
for different ratios a/b, T2/TI and different values of the side wall reflexivity r2. It is 
obtained that the absolute value of 6 diminishes as r2 grows, and reaches minimal values for 
adiabatic side walls (r2 = i). If the side wall temperature equals the temperature of the 
upper base, then 6 is independent of T~/TI since the local radiation flux density is linear 
in the difference in fourth powers of the temperature of the lower base and of the surround- 
ing walls. Otherwise, ~ is a function of T2/TI. Thus, for T3/T: = 2 and a change in T2/TI 
from 1 to 2, the quantity 5 changes sign from minus to plus (Fig. 3b). For "cold" (T~/TI = 
i) side walls, 5 is practically independent of x, while for "hot" (T=/TI = 2) walls a growth 
of 5 is observed with the increase in T. The dependence of ~ on a/b is shown in F$g. ~3ci!for 
different T. It follows therefrom that in computing the heat transfer in the charge heating 
chamber in the plane layer approximation, the resultant radiation flux on the charge is re- 
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duced. The influence of negative reflexivities of the upper and lower bases on the quantity 
is shown in Fig. 3d for adiabatic side walls. The maximum error is observed for absolute- 

ly black surfaces of the bases. 

The method proposed and the computation results are recommended for utilization to esti- 
mate the error in the plane layer approximation when modeling radiation heat transfer in rec- 
tangular chambers. 

NOTATION 

T, absolute temperature; q, radiation flux density; Q, resultant radiation flux; o, 
Stefan--Boltzmann constant; r, surface reflexivity; k, linear attenuation factor; Y, ratio of 
scattering to attenuation coefficients; ~, effective mean cosine of the scattering angle in 
an elementary scattering act; D, transmission function; Z, ray pathlength; a, channel width; 
b, channel height; x, y, coordinates. Subscripts: e, effective radiation; c, intrinsic ra- 
diation; i, lower base of channel cross section; 2, side walls; 3, upper base. 

i. 

. 

3. 

4. 

5. 

6. 

. 
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PROBLEM OF THE NONSTATIONARY STATE OF HEAT- AND MASS-TRANSFER 

PROCESSES IN BINARY GASEOUS MIXTURES 

T. N. Abramenko, E. A. Shashkov, 
O. A. Kolenchits, and A. F. Zolotukhina 

UDC 533.735 

Nonstationary heat- and mass-transfer processes in gaseous mixtures are con- 
sidered, and expressions are obtained for the heat-diffusion ratio and for the 
contribution of diffusion thermal conduction in conductive heat transfer. 

Molecular heat- and mass-transfer processes in gaseous mixtures are characterized by 
effective values of the thermal conductivity and thermal diffusion ratio, and these two (ef- 
fective) characteristics (transfer processes) are mutually related and may differ in value in 
the stationary and nonstationary states. 

Despite the large number of papers published on the subject, the mechanism of the phe- 
nomenon of thermal diffusion in gaseous mixtures is still unclear even in the case of mix- 
tures of monotonic gases. Experimental methods of determining the thermal diffusion con- 
stant of gaseous mixtures are usually stationary, since at the present time there is not even 
a theory which describes the nonstationary state of thermal diffusion. 
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